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1. starting rrlation8, Let us consider the equlllbrlum equations of an 
anisotroplc medium in the absence of body forces, singling out the variable 
t and omitting the summation sign 

k, r = 1, 2, 3 

pq= I,2 
(1.1) 

Here “yk are the elastic constants and rc, are the elastic displacements. 

We will construct the solution to the system of equatlons(l.1) in the form 

27-l 

u+ (xl, xa, 2) = 
s 

u:* (5, 2, A) dk 
t; = x1 ~0s h + x2 sin 3, (1.2) 

II 
Essentially this exploits the principle of superposition, formulated for 

the wave equation by Sobolev [ 11. We will call us* the transform of a:.’ 
Using the standard symbol for correspondence, we get 

a% AL,* 

axpaxq i apaq -gr 
a2us 

axpa 

azu,* 
Gap aEd 

ah, ah:+ 
, --_1- 

as - at2 c a1 = 
a2 = cos 

sin 

Equations (1.1) are satisfied, if 

We will construct the 

u,+ (Et 
We get 

Hence 
(cY$p=c 4 

azu,* ak,* 
+ aZiap aeaz 

ak; 

w 
-+a~~=0 (1.4) 

solution to this system of equations In the form 

z, h) = I: (Q, k), Q=Efvz (9.5) 

ap3a rk P 
v + eykVa) j 1 ” = 0, 

a2jz 
1,” = ana (1.6) 

A (V) = 11 a",;V" f a$apV f a?$apaq 11 = o 
For example, for orthotropic bodies 

(1.7) 
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AulZ + Naz2 -.b Mv2 (N + HI %a2 W + G) alv 
A (v) = (iv + H) ala2 lYa,c + Bas2 + Lv2 (L + 4 azv (W 

(Al + G) alv (L -t F) %V Mala t; Las2 ‘i_ Cv2 

Here A,B,C,L, M,N, F, G, 11 -are elastic constants [2]. 

We assume the roots of Equation (1.7), occurlng in complex conjugate 
pairs, to be distinct with nonvanlshlng Imaginary parts for all aP, which 
requires certain restrictions upon the elastic constants. We will not stop 
here to clarify this question. With this the real solution to Equations 
(1.4) will be written In the form 

IL+* (5, Z, h) = Re AT” ian) up (t + VP& A) (1.9) 

Here ArP are the minors of the determinant (1.7) corresponding to the 
elements of any row, anda a,,(B,,,h)are arbitrary functions, analytic In the 
upper half-plane if the anlsotroplc medium occupies the half-space 2 >o. 

2. The fundmmtal problrmr. In the first fundamental problem the stres- 
ses 

or = Q (21, x2), z & = Qk (x1, x2) (k = 1, 2) (2.1) 

where 4, 1 Is a known function, are given on the boundary I = 0 of the half- 
space. With the help of Hooke's law the connection between u,*.; and the 
transforms of the components of the stress tensor is easily established. 

For example, for orthotropic bodies, on the boundary 2 = 0 we have 

&Al* 

G a< 

al&n* 
__ _C FxzT + c T = (I$*, $& + dk F = @'k* (k = 1, 2) (2.2) 

Here @I* is the transform of the function @I. We are led -to the follow- 
ing problem: to 
plane, vanishing 
the boundary , = 

find functions &z analytic in the upper half of the 5~ 
at infinity, and saiisfylng the given combinations (2.2) on 
=o. It is solved very simply If ml*. is known. Substi- 

tuting aT*-in (2.2) we get 

RenjP (or) 0; (E, h) = wj* (E, h), ~0~' = am, 1 ag (2.3) 

Here Djp are kuown quantities. Introducing functions 

1 
Yj (C&L) = 2ni 

y mj (t, a) 

i t--Q Co (i = 1, 2, 3) (2.4) 

-Cc 

the equality in (2.3) becomes 

DjP(rp) up' (E, a) = Yj+ (E, A) (2.5) 

where Y,+ are the limit1 
y 

values of the function Y, on the boundary of the 
half-plane. Solving (2.5 and using analytic continuation we find 

up' (Q,, v = Q,j (Q yyj (Q,, A). Q2, = E -b VP2 (2.6) 

Having found u+*, with the help of the mapping formula (1.2) and by virtue 
of the uniqueness we have found the solution of the problem. The second 
fundamental problem is solved analogously. 

3. Bilrotr o? uclrymmrtrlo normal loado. The above method gives the 
solution to the problem If a way is known for determining the transforms of 
the functions given on the boundary. This way Is shown In the case under 
consideration. We have 

oz = % (r), zz,h. = u, I.2 = (Xl) 2 + (z2)2 (k = 1, 2) (3.1) 

Therefore @,* = 0. Fo r the purpose of finding @z* we point out that if 
the transform of any function depends only on 5 , then-the function depends 
only on r . Indeed, we have 
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But 
an-9 

s 0’ (r cos h) dh = 0 
--‘o 

1101 

(3.2) 

(3.3) 

Setting cp = n we get 

2 : 

s a,* (;)dh = 2 f@* (r cash) dh = Q, (r) (3.4) 

0 0 

Thus 

@ (r) + @,+ (E) (3.5) 

Setting rcosk= rl* we write 

Q(r)=2\;% (3.6) 

-r 

We will assume, in addition, that @* (- tl) = @,' (q)* Then we arrive at an 
Integral equation with respect to O*(q), which by substltutlon.ls easily 
brought to the known equation of Abel. Its solution has the form 

1 d ’ Q, (r) rdr 
-- - 

@+h)=2n dq v,,2--2 s 
(3.7) 

Returning to the problem under consideration, we get 

u$+ = 0 (k = 1, 2) (3.8) 

Correspondxgly, we write 

up' (a,, J.) = Q,9 (a,) y3 (n,) (3.9) 

The flnction Y, Is often found In a quite elementary way, as Is seen In 
the examples given below. 

1. Normal load, uniformly distributed 
over a circular area of radius I). We have 

P lnR2 
u, = @<r,(R) 

0 (r > R) 
(3.10) 

where p Is the pressure force. According to (3.8) we have 

- @3* (El = 
'I2 Pn-2R-2, 1 E I <R 

_ 112 Pa-2R-2 [I - 4(5? - R~)-‘/~]Y IEI>R 
(3.11) 

The function Y3 must vanish at Infinity, and on the boundary a = 0 of 
the half-plane Its real part must coincide with @)s* 6). 

All these requirements are satisfied by the function 

IP d 1 

y3(n)=-T?ddn~;1/~2_R~ 
(3.12) 

where by the radical Is understood that branch that a proaches the value n 
for large Cl . Lettl 

"& 
R go to zero we get the Y3 Cl) P that corresponds to 

the effect on an aniso roplc half-space of a normal concentrated force of 
lnten3lty P . We write the corn lete 

g 
solution for the case where the force 

Is applied at the point (rol, x0 , 0) 
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an 
P 

u+ = - 4n2 5 Re AsPQp E _ sod; y 
P 
z , E - E, = (9 - 2OP) clp (3.43) 

0 

2. Normal load, uniformly distributed 
over an annular area. 
the annulus, then 

If I), and R2 are the radii of 

IP d 1 
--- 

ye(Q)=- 2 ~2 dQ 1/~z_~~z+-(/z-~~z (4 > RI) (3.14) 

From this, writing R,= I),= R , we get the function Y3 for the case where 
a concentrated load uniformly distributed along a circumference of radius A 
acts on the half-space. 

3. A normal load of given pntensity, 
distributed over a g i'v e n region on the 

The solution Is constructed by the method of super- 
io&!&tnewitEh zhz ;se of (3.13). 

4. A normal load of the form 

distributed over an elllpti 
with semiaxes and b In this 
between the original and its'transform Is &tabllshed 

ax 

UT = 
s 

n,* (E, z,V & E = lpclpxP, 

0 

(k = 1, 2) (3.15) 

cal area 
case the connection 
In the form 

1, = $ (3.16) 

The solution is written in the form (1.9) and (3.9), where it is necessary 
to carry out ever. here the replacement of %J by lpap.In order to make use 
of the result (3. r ) It Is necessary to Introduce new variables 

XP = zpxp (p = 1, 2). 

With this we immediately find the function \y3 for the following three cases: 
a) a normal load, uniformly distributed over an elliptical area, (5) over 
an elliptical annulus, with boundaries of similar and similarly arranged 
e=W;~s, (c) c normal concentrated load uniformly distributed alo 

. In cases,(a) and (c) It is sufficient to replace .L1 by &anin 
the corresponding formulas of items 1 and 2 . In case (b) it is neces- 
aary to put R2=1/5, R, = zg -@, where 7c is a similarity coefficient. 

4, ~u~rrrolp irotroplo bodlrr. Let us dwell on this more simple case 
of anisotropy at greater length. We have 

B = A, G - F, M = L, H=A--2N 

The results being considered here may be obtained from the foregoing. 
However it is simpler to derive them directly. Let us set 

u* = au,* +fiuc*, v* =puc* -auc*, u* = ul*, v* = u2*, u = d,, 6 = a2 (4.2) 

Here uc*, uJ* are new unknowns. System (1.4) is equivalent to the fol- 
lowIng: 

A~+L~+(L+F)$&--C, 
(4.3) 

(L+F)$$+++C$$=C, 

Conditions (2.2) take the form 
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8L($++$) ?!_& 
(4.4) 

- aL @D, (5, A), 

If an a&symmetric and purely normal load acts on the boundary of the 
half-space, then, as Is not difficult to show, I+,* E 0, and the problem redu- 
ces to the determination of u l and W* 
Condltlon (4.4) Is written in the form 

from tne rlrst two equations (4.3). 

&L,* 
F af + C $$ = @3(E), 

(4.5) 

The method shown above leads In the present case to the following solution 
of the problem: 

L+F A-vv,2F 
m* = _ Re- 

A - vz2 F : 

A V,vs (‘$ + VIZ) vz~‘3 (E d- v2z) 1 

1 A - v12 F 

w+ = Re x (A + v?L) Y3 (% f vlz) 

A - v2a F 
(A + v,zL ) Y3 (% + vlz) (4.6) 

Here 

A= 
I 

A - via F A - vz2 F 
u + CL VI’ m + CLv,2, ’ 

m=CA-F(L+F) (4.7) 

The roots vk are found from the equation 

I 

A + v2L (L + F) v 
(L + F) v L + VW 

= o (4.8) 

For the effect of a concentrated force at the point (so, vO, 0) we get, 
Supposing for slmpllclty that Vk = iTk and r,>O (k = 1,~) 

P L + F A + r12F 
Ub, Y, 2) = - 4n%T 

A + ~2~1; 

r,J (E’; 31; rl) 7sJ (%‘, a: 72) 

P L+F A+7?F 
(4.9) 

0 (2, Y* 4 = - -&TL\, 
A + ra2F 

r,J (E’; B ; TJ 72-J (E’; B ; T2) I 

P 
w (2. y¶ z, = 4,‘lA, 

A -I- r?F A + QF 

Here 
(A - rlpL) J (e’; i; rJ (A - r,W J(%‘; i; h) 

(4.10) 

aa 

A0 = iA, J (%‘; 6; rk) = Re 
s 

6dh 

o E’ + irk2 ’ 5’ = (z - zo) a + (Y - yo) P (4.11) 

We have 

J (E’; a: T/J = - (2n / P') Tk (P', 2) coscp, cos~=((z-z20)/p‘ 

J (E'; P; rk) = - (2~ /P') Tk (P', 2) Since, Sincp = (y - yO) / p' (4.12) 

.J (f’; 6 ‘rk) = (2~17,) 2 11 - T, (P', z)l, T, (p', z) = (P'~ + -Qz2)-'/: 

Substituting (4.12) Into (4.9) and (4.10), we get the solution to the 
problem In terms of the displacements. When we calculate the stresses we 
arrive at a known result, found ln a different way [33. The transition to 
an Isotropic body Is realized by settingc =A = h, + I$,,, L-f-P = li,, -+po 
and L = h, where are the Lame constants, In this case 
YI =yp= 1 . Formul.asX~4~~ & ( 4.10 lead to Indeterminateness that is ) 
easily resolved. We get a known result of Bousslnesq [41. 

From Formula (4.10) with I = 0 we find 

PAI 1 
w (? Y, ‘) = znAo p 

A + h2 A + FP’ -- 
,4 - LpT A - @a’ I) 

(4.13) 



The result (4.13) permits the extension of 
problem to the case of transversely Isotropic 

the theory of the Hertz contact 

the bodies are compressed along the direction 
bodies, with the condition that 
of their common monotropic axes. 

5. R.dUotiOn to thr plane problem, Using 
for the transforms of the components of the strain tensor 

(4.2) we derive the relations 
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rz”, = Wr& 7,; = PT$, 
aw* au,* 

rz; = r + 7 * 
e * _a:w* 

* --z- 

et* = ex* + ev* = u2ex* + P2eV* + ~$3~~; (5.1) 
From these it is easy to extract, In transform space, the conditions of 

compatlbillty for the strain and to shorv that all of them will be satisfied 
if 

a2e * Pe * avz4* 
2+-&c- 

a9 aga2 (5.2) 

In this same space It is possible to write down the equilibrium equations 
for the transforms of the components of the stress tensor, and also Hooks’s 
law, which takes the form 

o*= (‘4 - 2N!3‘9 &* + Fe,*, 
:g = Lcq,& 

‘I,* = FeE* + Ce,* 

oII* = (A - 2Na2) et* + Fe,* 

z * = 2Napeg*, xv “& = LPr,t 

(5.3) 

. 
It Is easy to prove that the equllibrlum equations are satisfied If 

at 
fT+-+, a5, aa, 

z+==o, crE = a%,* + puy* + 2apz.4 (5.4) 

In this case 
at* = AeS* f Fe,*, ‘J,* = Fet* + Ce,* (5.5) % 

Thus, the problem of the effect on a transversely Isotropic half-space of 
an axisynunetrlc normal Load reduces to the plane problem (5.2), (5.4) and 
(5.5) with known boundary conditions. 

Setting 

CQ = azs* 1 azz, 'J,* = as* I ap, zzi = - ayp i ata (5.6) 

with the use of (5.2) and (5,5) we derive 

( 

a2 a2 
I( 

aw* aw --y2- -- 
a3 1 ay a22 va2 ygr 1 -0 (5.7) 

Here vt are the roots of Equation (4.8). 
the blharmonlc equation. 

For an Isotropic medium we get 
It Is not. difficult to derive the corresponding 

equation for the original. 

We have, on the basis of (1.3) 

2 
.,++aS 

aw av 
rzx = - azax 7 

z =---c (5.8) 

ag 9 ZY azay 

where S(X, F, s) corresponds to the transform S*(t, Z, k). In Place of 
(5.7) we will have 

I 

9 aw 
=o -- 

a22 vl 2G- ( 
a2 +$)][q&q($+~ (5.9) 

Correspondingly, we obtain 



Bousslnesq type problems fcr the anisotropIc half-space 1105 

2n 

(J, = (1 - 2caJ a22 ~+2FDogjg+2CD& s 
a*S+ dl. 

0 

an 

(5.10) 

which Is equivalent to the replacement 

aw aw 
s (2, y, 4 = w + ay” 

(5.12) 

then 
an 

c 

(32@ ?" 
an 

cGS* dk = - a22 ' I 
fPS+ dh, = ‘$ , s 

a@ 
apS*dk = a~ (5.13) 

Ii 0 0 

and the stresses are expressed through a single function # , satisfying 
Equation (5.9). 

We note that the results (5.1) to (5.6) and also (5.8) and (5,IO)to (5.13) 
remain In effect also in the case when the elastic coefficients depend-on z. 

In the general case of transversely isotropic bodies the relations (4.2) 
correspond to the representations for the nrlglnals 

(5.14) 

where the function x Is Introduced for convenience. The equlllbrlum equa- 
tions will be satisfied If 

(t + F) ax2 ( 
aax ~+g$)+,(~+$$)+cs=D 

azll, N($+$+L~=o 

(5.15) 

It Is easy to show that the functions cp and x satisfy Equations (5.9). 
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