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1, S8tarting relations. Let us consider the equilibrium equations of an

anisotropic medium in the absence of body forces, singling out the variable
2 and omitting the summation sign

(1.1)

u_ u_ 0%u, (k, T=1,2, 3)

03 i 33 —
dzPdzd ok 0xPdz +ow gz =0 pg=1,2

Here a:; are the elastlc constants and u, are the elastic displacements.
We will construct the solution to the system of equations(1.1) in the form
o2n
ur (xly 1'2, Z) = S uzt (g’ 2z, h) dl, = xl €03 A‘ + x2 sin A’ (12)
0

Essentially thils exploits the principle of superposltion, formulated for
the wave equation by Sobolev [1]. We will call u * the transform of u.’
Using the standard symbol for correspondence, we get

pq
Ak

u. —a , -
9Poa - (P4 8 | pgPeg - P Obdz | 0 T 0%

Equations (1.1) are satisfied, if

(1.3)

Pu* o%u., ou* o,  Ou.* ) = oS k)
a, =sini

2 *
au * azu‘: a9 U,

T LT . . B 1.4
aPaa, —gzr + a5 Egr %k o T O (-9

We will construct the solutlion to this system of equations in the form

u’.‘ (gy z, A’)=/- (Qv A')1 Q= §+V2 (15)
We get
9.
(P, + aPRo,v + a%v?) 1.7 =0, f" = 208 (1.6)
Hence
A (v) = | a33v? 4 aFRa,v + affapa | = 0 (1.7)

For example, for orthotropic bodiles
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Aa? 4o Na?2 - Mv? (N -+ H) aa, (M + G) ayv
A = (V + H) a0, No,? + Bay? - Lv? (L + F) ogv (1.8)
(M 4+ Gy o,V (L -+ F) opv Ma?2 = Loy - Cv?

Here A, B,C,L, M, N, F, G, H —are elastic constants [2].

We assume the roots of Equation (1.7), occuring in complex conjugate
pairs, to be dlstinct with nonvanishing imaginary parts for all go_, which
requires certain restrictions upon the elastic constants. We wi1l® not stop
here to clarify this question. With this the real solution to Equations
(1.4) will be written in the form

u* 2 A) = Re AP (2,) o, (& + v,z 1) (1.9)

Here A.° are the minors of the determinant (1.7) corresponding to the
elements of any row, ahdd ©, (Q,, A) are arbitrary functions, analytic in the
upper half-plane 1f the anisotropic medium occupies the half-space > 0.

2. The fundamental problems, In the first fundamental problem the stres-
ses
G, = O, (2, 23), T = Dy (@, 29 k=1, 2) 2.1)

where (Dl 1s a known function, are given on the boundary » = O of the half-
space. With the help of Hooke's law the connection between u *. and the
transforms of the components of the stress tensor 1s easily esvablished.

For example, for orthotropic bodies, on the boundary =z = O we have

our* du=* dus* ou,* dug™
G—éz"—!—Fdza—g—i-CT-—(m*, T—l—ak-—-a—i—

Here ®/* 1s the transform of the function ®;. We are led to the follow-
ing problem: to find functions &z , analytic in the upper half of the Ez
plane, vanishing at infinity, and satisfying the given combinations (2.2) on
the boundary g = O . It is solved very simply if (Dl*. is known. Substi-
tuting » * in (2.2) we get

=0* (k=12 22

Re D]p (11]) (.l)p’ (Ea }") = (DJ* (§7 }")’ (Dpl = a(‘op / ag (2'3)
Here Djp are kunown gquantities. Introducing functions
oo
1 ¢ QLN .

- — S, = 3 2.4
¥ (Q, 0 =5 \ ot G=1273 2.9

—00

the equality in (2.3) becomes

Df () 0, (5, 4) = ¥+ (£ 1) (2:5)

where v,* are the limiti values of the function ¥, on the boundary of the
half-plane. Solving (2.5) and using analytic continuation we find

O (R 1) = Q7 (2) W3 (R, 4), Q=& 4 vz (2.6)

Having found u.*, with the help of the mapping formula (1.2) and by virtue
of the uniqueness we have found the solution of the problem. The second
fundamental problem is solved analogously.

3. Effects of axisymmetrio normal loads. The above method glves the
solution to the problem if a way 1s known for determining the transforms of
the functions given on the boundary. This way is shown in the case under
conslilderation. We have

0, = By (r), T = 2= () ? 4 (27)° (k=1,2) (3.1)

Therefore <D,i* = 0. For the purpose of finding D* ye point out that 1if
the transform of any function depends only on € , then. the functlion depends
only on r . Indeed, we have
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T e b = rcosg
S @* (t) d\ = S @* (r cos A)'dAr (x‘-‘ — rsin (p) (3.2)
0 —
But
In—P
5%— S ®* (rcosA)dh =0 (3.3)
—®
Setting ® =1 we get
S D% (5 dh =2 S @* (r cos M) dh = D () (3.4)
Q0 0
Thus
D (r) = D* (}) (3.5)
Setting rCOSA =1, we write
r
®* () dy (3.6)

20 =2) v

-—r

We will assume, in addition, that ©* (— 1) = @* (M). Then we arrive at an
integral equation with respect to ®*(v), which by substitution.is easily
brought to the known equation of Abel. Its solution has the form

0

1 d ¢ ®()rdr 3.7)
o*(m) = '2_,{4—7]% Vo—r
Returning to the problem under consideration, we get
g
1 g ¢ 0,(r) rdr
D* (8) = ﬁd_ggﬁ' Qr*=0 (k=1,2) (3.8)

0

Correspond:ngly, we write
@) (R, 1) = Q. (1) ¥3(2) 3.9)

The finction ¥, 1s often found in a quite elementary way, as is seen in
the examples given below,

1. Normal load, unifor
area o

mly distributed
over a circular f radilus R . We have

0_{P/:tR2 0 r<AR 3.0
: 0 (r> R) (3.10)
where P 1s the pressure force. According to (3.8) we have
— 1Y, Pn2R™2, |E| <R
ms‘(§)={ f oeapeg | s pn-h], |EI>R (3.11)
— 1, P ?R2 [1 —E(E2 — R)™" )
The function Y, must vanish at infinity, and on the boundary g = 0 of
the half-plane 1ts real part must coincide with D &).
All these requirements are satisfied by the function
N A SO S— (3.12)
¥, (Q)=— 2 Tt dQ Q_:_]/Qz_Rz
where by the radical 1s understood that branch that approaches the value 0
for large 1 . Letti R g0 to zero we get the Y, f1) that corresponds to
the effect on an anisotropic half-space of a normel concentrated force of

inten3ity P . We write the comglete solution for the case where the force

is applied at the point (x,®, x,°,
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an
- _ 2 dh
Y T T e § Re APQos—g, Tve vz ! E—E =P —zP) o, (3.13)

2, Normal load, uniformily distributed
over an annular area. If R and R, are the radii of
the annulus, then

1 P d 1
¥ (Q) = — 57 30 VOri_RELV O — RS2
From this, writing R, = R,= R , we get the function ¥, for the case where

a concentrated load uniformly distributed along a circumference of radius R
acts on the half-space.

(B> Ry) (3.14)

. A normal load of glven i*ntensity,
dlstributed over a glven region on t he
plane z =0, The solution 1s constructed by the method of super-
pos¥tion with the use of (3.13).

4, A normal load of the form

o, = O (V(b / a) (z4)? (a / b) (z%)?), rzxk =0 k=1, 2) (3.15)
distributed over an elliptical area
wilith semlilaxes a anad > . In this case the connection
between the original and its transform 1s established in the form

a
u =S wr (&5 Ndh,  E=lLagP, L=, bL=7 (3.16)

0
The solution is written in the form (1.9) and (3.9), where it is necessary

to carry out everywhere the replacement of %p by | ap.In order to make use
of the result (3.8) it 1s necessary to introduce new variables

xlp = lpa:p (p = 1, 2)'

With this we lmmediately find the function ¥, for the followlng three cases:
a) a normal load, uniformly distributed over an elliptical area, (b} over
an elliptical annulus, wlth boundaries of similar and similarly arranged
ellipses, (¢} ¢ normal concentrated load uniformly distributed alo an
ellipse. In cases, (a) and {c¢) it is sufficlent to replace ® by ,ad in
the corresponding formulas of items 1 and 2 . In case (p) 1t is neces-
sary to put Rz==]/53,31== 101/;;’where T, 1s a similarity coefficlent.

4, Transversely isotropic bodies. Let us dwell on this more simple case
of anisotropy at greater length. We have

B=4, ¢ =F, M=1L, H=A4—2N (4.1)

The results being considered here may be obtalned from the foregoing.
However it 1s simpler to derive them directly. Let us set

—_ — — * =
u* = aug* +Pus*, v* =Pu* — oug® ut = ¥, =, a=0y,

B =a, (4.2)

Here wuy,*, us* are new unknowns. System (1.4) 1s equivalent to the fol~-

lowing: , PRut &2w*
A ____6a§u; +L 8z; TEL+F ot 0z 0, Nﬁ‘ﬁ*_ + Pugt 0 (4.3
Pt 2wt 652 022

up* —
L+ P e TLam TC a2 O
Conditions (2.2) take the form
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Jug® ow* dua*
o (G + 25 4 2 =0, 0,

Quy* ow* dug*
8L (—-——-—az‘ + 5 ) —al - =@, (§, &),

* ouw*
a;‘; FCS— =0 &N (4

If an axisymmetric and purely normal load acts on the boundary of the
half-space, then, as is not difficult to show, u;* = 0, and the problem redu-
ces to the determination of u,* and wp* from tne rirst two equations (%,.3).
Condition (4.4) is written in the form

dug* dw* Que* ow*

— e =0 4.5)
Fg 0% = ®@ 5. T (
The method shown above leads in the present case to the following solution
of the problem:
. L+F|A—v?F A—vriFo
Upm = — Be A VIWS (§ + 'VIZ) v2qr3 (g r:- sz) }
. 1 1A4A—wv?*F A—v?F (4.6)
w* = Re 'A—] (A4 + VL) ¥ (B +vi2) (A + viL) Wy & + va?)

Here

A — Vla F A — 'V22 F
uw + CLv2? m + CLv.?,
The roots v, &re found from the equation
A+vL (L+Fv
(L4 F)v LAVC

For the effect of a concentrated force at the point (xo, Vo 0) we get,
supposing for simplicity that v, = iT, and Tk >0 (k=1,2

A= , m=CA—F(L+4 F) 4.7

=0 (4.8)

P L FLA 12F A 4 1EF
e, Y 2) = — Zmm TA |1 & 51 T (@) 4T “9)
P L+ F|A+1EF A 4 ToF )
v (@ %)= =@ A, | T @B 1 & T
(@Y DT man | M — DT (e G A — 1) TR 5T :
Here
. , s
B=ib  TEIGT) =R\ g, V=G —zgat -y B GiD)
0
We have
JEa ) =—@u/p) T, (p', ) cosp,  cosp = (x — zo) / p’
JEBM) = —@u/p) Ty (p', 2)sing, sing = (y —yy) / p’ (4.12)

TEG i) =0Cn/n)z[1 — Ty (¢, 2}, Ty (p'y 2) = ("% + T7)32%)~'h

Substituting (4.12) into (4.9) and (4.10), we get the solution to the
problem in terms of the displacements. When we calculate the stresses we
arrive at a known result, found in a different way [3]. The transition to
an isotropic body is realized by settingg — 4 = Ay + 29, L 4 F = Ao + Io
and L = py,, where 1\, and are the Lame constants., In this case
Y1 = ya= 1 . Formulas ts.9) a% (4.10) lead to indeterminateness that is
easlly resolved. We get a known result of Boussinesq [4].

From Pormula (4.10) with 2z = O we find

PA, 1 | A Ful? A4 Pl
w(xvyvo): ZnAo_p-( 1 ‘4—L}112 A—l/p-"

) (4.13)
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The result (4.13) permits the extension of the theory of the Hertz contact
problem to the case of transversely isotropic bodies, with the condition that
the bodies are compressed along the direction of their common monotroplc axes.

5. Reduotion to the plane problem. Using (4.2) we derive the relations
for the transforms of the components of the strain tensor

* o y2p ¥ * 20 % * * * Gug*
et = ofe*, gr = g e, Txy = ZaBsE s gt = 3E
. " N N ow* duy* w*
Toi = 1.5, Yoy = BY.E Yok = 3 + 9z &' =7,
85* = Ex* + Sy* — a28x* + Bzey* + aB'Tx; (51)

From these 1t is easy to extract, in transform space, the conditions of
compatibllity for the strain and to show that all of them will be satisfied
if

6285’* 6282* aszE*
_—
d32 9E2 ko2
In this same space it 1s possible to write down the equilibrium equations

for the transforms of the components of the stress tensor, and also Hooks's
law, which takes the form

(5.2)

O = (A4 —2NB) E* + Fe*,  0* = Feg* 4 Ce*
Tr = Lart, o,f = (4 — 2Nu?) e* 4 Fe* (5.3)
T = 2Nofe;*, Ty =LBYe

It is easy to prove that the equilibrium equations are satisfied if

13 of av ot do
St =0 T g =0 G =it 480t 42 (G4)

In this case . 5
og* = Ag;* 4 Fe*, 0% = Fe* + Ce, (5.5)

Thus, the problem of the effect on a transversely isotropic half-space of
an axlsymmetric normal load reduces to the plane problem (5.2), (5.4%) and
(5.5) with known boundary conditions.

Setting
o* = 8%8* [ 922, o,* = as* [ 92, T = — 9s* [ 689z (5.6

with the use of (5.2) and (5.5) we derive
(32 , O )(625* zﬁzs_*) =0 (5.7)

o2~ VU oEE)\a2 T V2 aER

Here v, are the roots of Equation (4.8). For an isotropic medium we get
the biharmonlec equation. It is not difficult to derive the corresponding
equation fer the original,

We have, on the basils of (1.3)

N
2 2 928 _ — (5.8)
G=£+—6_§_ T = " Fzaw’ T = dz0Yy

z £ ayt ! zx

where S$(x, y, #) corresponds to the transform S*(g, z, »). In place of
(5.7) we will have

2
o i & \][o%s (_3_2:9_ + )] =0 5.9)
[ 5 W ( 3t o ) B2~ W\ T o (

Correspondingly, we obtain
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2n

S 23S i
6, = (1 —2CDy) + 2FD, s + 20Dy 3z | it dh
0

an
025 S 02
o, = (1 —2CDy) 5z + 2FDy 5 + 2Dy 37 B2S* dh (5.10)
0
an N
9% LN _
T, = — 2FD, Erer + 2CD, —3?.3 adS*dh, Do= 27— fz
0
ir PO*
§* = m (5.11)
which 1s equivalent to the replacement
b 1o
S,y )= 37 + T (5.12)
then o
¥ - s PO
oD 9?0 _
S ats* dh =51, \ Bis® dh = o » g aBS*dh = gp- (5.13)
0 0 0

and the stresses are¢ expressed through a single function & , satisfying
Equation (5.9).

We note that the results (5.1) to (5.6) and also (5.8) and (5.10) to (5.13)
remain in effect also in the case when the elastic coefficilents depend on ¢,

In the general case of transversely isotropic bodies the relations (4.2)
correspond to the representations for the originals

oy _ 99 _ 9y 9,

= . = —

R i ST e 7 (5.14)

where the tunction y 1s introduced for convenience. The equilibrium equa-
tions will be satisfied if

i G g it A
A(-a—;g—-i' ;;;)-F Loy + L+ P35z =0
P P 3y oy &y _
wrn(GE+ar) (G a)teas =0 e
i I & _
N(012+6y2>+[‘ 923
It 1s easy to show that the functions ¢ and y satisfy Equations (5.9).
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